The Hasse principle for diagonal forms restricted to lower-degree hypersurfaces
نویسندگان
چکیده
We establish the analytic Hasse principle for Diophantine systems consisting of one diagonal form degree $k$ and general $d$, where $d$ is smaller than $k$. By employing a hybrid method that combines ideas from study forms with techniques adapted to case, we are able obtain bounds grow exponentially in but only quadratically $k$, reflecting growth rates typically obtained both problems separately. also discuss some most interesting generalisations our approach.
منابع مشابه
The Hasse Principle for Pairs of Diagonal Cubic Forms
By means of the Hardy-Littlewood method, we apply a new mean value theorem for exponential sums to confirm the truth, over the rational numbers, of the Hasse principle for pairs of diagonal cubic forms in thirteen or more variables.
متن کاملA Hasse Principle for Quadratic Forms over Function Fields
We describe the classical Hasse principle for the existence of nontrivial zeros for quadratic forms over number fields, namely, local zeros over all completions at places of the number field imply nontrivial zeros over the number field itself. We then go on to explain more general questions related to the Hasse principle for nontrivial zeros of quadratic forms over function fields, with referen...
متن کاملCounterexamples to the Hasse Principle
This article explains the Hasse principle and gives a self-contained development of certain counterexamples to this principle. The counterexamples considered are similar to the earliest counterexample discovered by Lind and Reichardt. This type of counterexample is important in the theory of elliptic curves: today they are interpreted as nontrivial elements in Tate– Shafarevich groups.
متن کاملCounterexamples to the Hasse principle
In both of these examples, we have proved that X(Q) = ∅ by showing that X(Qv) = ∅ for some place v. In the first case it was v = ∞, the real place. In the second case we showed that X(Q2) was empty: the argument applies equally well to a supposed solution over Q2. Given a variety X over a number field k and a place v of k, it is a finite procedure to decide whether X(kv) is empty. Moreover, X(k...
متن کاملOn the Hasse Principle for Shimura Curves
Let C be an algebraic curve defined over a number field K, of positive genus and without K-rational points. We conjecture that there exists some extension field L over which C violates the Hasse principle, i.e., has points everywhere locally but not globally. We show that our conjecture holds for all but finitely many Shimura curves of the form XD 0 (N)/Q or X D 1 (N)/Q, where D > 1 and N are c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebra & Number Theory
سال: 2021
ISSN: ['1944-7833', '1937-0652']
DOI: https://doi.org/10.2140/ant.2021.15.2289